Self-Supervised GNN that Jointly Learns to Augment

Zekarias T. Kefato[†], Sarunas Girdzijauskas[†] and Hannes Stärk^{††}

[†]KTH Royal Institute of Technology ^{††}Technical University of Munich zekarias@kth.se,sarunasg@kth.se,hannes.staerk@tum.de

Overview

- Self-supervised Learning (SSL) aims at learning representations of objects without relying on manual labeling.
- Graph data augmentation is a key challenge in SSL for graphs, existing studies use heuristics for graph data augmentation
- We propose a self-supervised GNN framework called Surgeon that jointly learns both the data augmentation and representation.
- Surgeon doesn't require explicit negative sampling, i.e., needs only positive pairs.
- Instead of engineering tricks as in previous works, Surgeon employs a principled objective based on Laplacian Eigenmaps that avoids collapse.

Inputs

- A graph $G = (\mathbf{A}, \mathbf{X})$, where $\mathbf{A} \in [0, 1]^{N \times N}$ is the adjacency matrix and $\mathbf{X}^{N \times F}$ is a feature matrix. N is the number of nodes and F is the number of features.
- A GNN encoder h_{θ} , $\mathbf{Z} = h_{\theta}(A, X) = h_{\theta}(G)$

Learning

- Surgeon learns node representations in a self-supervised fashion using a *pre* or *post* architecture shown in the **Architecture** box.
 - pre: augmentation in the input space.
 - **post**: augmentation in the latent space and introduced to improve resource usage
- f_{θ_1} and f_{θ_2} are functions to generate two augmented views of each node.
 - Learned, i.e. governed by the signal encoded in the graph
- The unit vectors, \bar{Z}_1 and \bar{Z}_2 , are the learned representations for the two views

Learning Objective

Based on Laplacian Eigenmaps

 $\mathcal{L}_{\theta,\theta_1,\theta_2} = ||\bar{\mathbf{Z}}_1 - \bar{\mathbf{Z}}_2||_F^2 + \gamma (||\bar{\mathbf{Z}}_1 \bar{\mathbf{Z}}_1^\mathsf{T} - \mathbf{I}_N||_F + ||\bar{\mathbf{Z}}_2 \bar{\mathbf{Z}}_2^\mathsf{T} - \mathbf{I}_N||_F)$ (1)

Note: θ_1 and θ_2 are jointly learned with θ

Node classification (NC) results for small to medium scale datasets

	Algorithms							
Datasets	Semi-Supervised			Contrastive			Asymmetric	Surgeon
	GCN	GAT	GraphSage	DGI	MVGRL	GCA	SelfGNN/ BGRL	Jurgeon
Cora	60.1±.001	58.27±.003	57.45±.003	50.66±.001	39.42±.193	37.64±.014	54.61±.135	56.33±.07
DBLP	82.7±.002	82.88±.002	$81.39 \pm .005$	78.87±.002	69.2±.052	$81.16 \pm .007$	81.32±.071	81.48±.09
PubMed	85.62±.001	84.98±.002	84.73±.001	84.28±.001	77.99±.315	82.76±.005	84.6±.076	84.94±.091
Physics	95.4±.001	95.02±.002	†	94.92±.001	91.18±.024	†	95.11±.07	95.11±0.025
CS	91.87±.001	$91.07 \pm .002$	91.44±.001	$91.72 \pm .001$	87.18±.095	88.01±.005	92.23±.01	92.03±.0
Computers	88.54±.003	88.3±.006	87.93±.004	80.28±.004	78.57±.14	74.04±.005	86.23±.139	85.16±.133
Photo	93.02±.003	93.18±002	93.64±.002	92.36±.06	86.04±.12	84.93±.009	92.87±.08	92.27±.05
Actor	28.38±.008	28.62±.01	33.88±.007	29.93±.007	63.3±.03	27.39±.01	29.41±1.46	30.19±.34
WikiCS	76.87±.006	77.38±.005	77.41±.006	70.01±.007	61.7±.52	75.25±.006	75.34±.528	75.59±.11
Facebook	89.5±.002	89.3±.01	89.25±.002	82.42±.001	78.88±0.045	86.29±0.004	86.38±.084	84.92±0.015
Flickr	$51.66 \pm .001$	$42.35 \pm .001$	52.11±.001	$45.94 \pm .001$	†	†	51.26±.528	50.91±.054
Github	86.14±.001	$86.16 \pm .001$	85.77±.001	83.84±.001	83.93±0.032	†	85.58±.053	85.7±.028

NC results for large scale datasets

Resource usage: pre vs post architecture

Algorithms	Datasets			
Algorithms	Yelp	Reddit		
ClusterGCN (semi)	78.21	95.33		
GraphSaint (semi)	75.62	95.73		
PPRGO (semi)	77.7	91.8		
Surgeon	77.44	91.22		

Conclusion

- Augmentations can be jointly learned with representation
- Perturbations (e.g. dropping edges and nodes) are ill defined for some domains (e.g. molecular graphs), and hence learned augmentations are more suitable (Future work)
- Post architecture improves resource usage

